Active semi-supervised overlapping community finding with pairwise constraints
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Metric Learning Using Pairwise Constraints
Distance metric has an important role in many machine learning algorithms. Recently, metric learning for semi-supervised algorithms has received much attention. For semi-supervised clustering, usually a set of pairwise similarity and dissimilarity constraints is provided as supervisory information. Until now, various metric learning methods utilizing pairwise constraints have been proposed. The...
متن کاملSemi-supervised Gaussian process latent variable model with pairwise constraints
In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, i...
متن کاملSemi-supervised Clustering with Pairwise Constraints: A Discriminative Approach
We consider the semi-supervised clustering problem where we know (with varying degree of certainty) that some sample pairs are (or are not) in the same class. Unlike previous efforts in adapting clustering algorithms to incorporate those pairwise relations, our work is based on a discriminative model. We generalize the standard Gaussian process classifier (GPC) to express our classification pre...
متن کاملSemi-supervised and Active Image Clustering with Pairwise Constraints from Humans
Title of dissertation: Semi-supervised and Active Image Clustering with Pairwise Constraints from Humans Arijit Biswas, Doctor of Philosophy, 2014 Dissertation directed by: Prof. David W. Jacobs Department of Computer Science University of Maryland, College Park Clustering images has been an interesting problem for computer vision and machine learning researchers for many years. However as the ...
متن کاملA Semi - supervised Text Clustering Algorithm Based on Pairwise Constraints ★
In this paper, an active learning method which can effectively select pairwise constraints during clustering procedure was presented. A novel semi-supervised text clustering algorithm was proposed, which employed an effective pairwise constraints selection method. As the samples on the fuzzy boundary are far away from the cluster center in the clustering procedure, they can be easily divided in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Network Science
سال: 2019
ISSN: 2364-8228
DOI: 10.1007/s41109-019-0175-7